202511191250 Status: idea Tags: Datascience, NLP

NLP Stopword Removal

  • Stopwords : Common words (articles, prepositions, pronouns) with little semantic value.
  • Examples : ā€œtheā€, ā€œandā€, ā€œisā€, ā€œinā€.
  • Importance : Proper handling improves NLP performance and efficiency

When do you remove stopwords?

Beneficial for:

  • Text classification
  • sentiment analysis
  • Information retrieval
  • search engines
  • Topic modeling
  • clustering
  • Keyword extraction Keep stopwords for:
  • Machine translation (grammar structure)
  • Text summarization (sentence coherence)
  • Question answering systems (syntactic relations)
  • Grammar checking, parsing

Types of stopwords

  • Standard stopwords : Function words (ā€œaā€, ā€œtheā€, ā€œinā€, ā€œonā€)
  • Domain-specific stopwords : Field-dependent terms (e.g., ā€œpatientā€ in medical texts)
  • Contextual stopwords : Extremely frequent dataset-specific words
  • Numerical stopwords : Digits, punctuation marks, single character

References